Alan Tunai	Basic Derivative Rules
Alan Tupaj	
Vista Murrieta High School	AP Readiness Session 1
Website: www.vmhs.net	
(Click on Teachers then Alan Tupaj)	Answers to examples posted on my website
Derivativa Rulas	Evenues . For each function find (1/2)
Derivative Rules	<u>Examples</u> : For each function, find $f'(x)$
Derivative of a constant:	f(x) = 3
	f(x) = 5
d	
$\frac{d}{dr}(c) = 0$	
dx	
	5
	$f(x) = x^3$
Derivative of a variable to a power:	
Power Pulo	$f(\mathbf{r}) = 1$
Power Rule	$\int (\lambda) - \frac{1}{x^3}$
4	$f(x) = x^{5}$ $f(x) = \frac{1}{x^{3}}$ $f(x) = \sqrt{x^{3}}$ $f(x) = \frac{1}{\sqrt[3]{x^{4}}}$
$\frac{d}{dx}(x^n) = nx^{n-1}$	$f(x) = \sqrt{x^3}$
dx	$\int (x) = \sqrt{x}$
	$f(x) = \frac{1}{x}$
	$\int \sqrt{x} = \frac{3}{\sqrt{x^4}}$
	•
Derivative of the sum or difference of	$f(x) = 2x^3 - 5x^2 + 3x - 8$
functions:	$\int (\Lambda) - 2\Lambda J\Lambda + J\Lambda = 0$
$\frac{d}{dx}(f(x)\pm g(x)) = f'(x)\pm g'(x)$	
un l	
Derivative of a product of two functions:	$f(x) = (5x^2 - 2)(x^3 + 4x^2 + 3)$
	$\int (\lambda) - (J\lambda - 2)(\lambda + 4\lambda + 3)$
Product Rule	
d	
$\frac{d}{dx}(f(x)g(x)) = f(x)g'(x) + g(x)f'(x)$	
un l	
Derivative of the quotient of two functions:	
	$f(x) = \frac{x^3 - 2x}{3x - 4}$
Quotient Rule	3x-4
$\int d f(x) = g(x)f'(x) - f(x)g'(x)$	
$\frac{d}{dx}(\frac{f(x)}{g(x)}) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$	
$ax g(x) \qquad (g(x))^2$	

Division with Monomial Denominator	$f(x) = \frac{x^5 - 7x^4 + 2x^3 - x^2 + 5}{x^3}$
Distribute the monomial in the denominator	x^3
Application: Equation of a tangent line	Find the equation of the line that is tangent to the function
Given x_1 , substitute into the function to	$f(x) = 2x^3 - 3x^2 + 5$ at $x = 2$
find y ₁	
Substitute into the derivative to find m	
Tangent line: $y - y_1 = m(x - x_1)$	